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Discontinuous Galerkin Finite Element Method for Euler and
Navier-Stokes Equations
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A finite element method for the Euler and Navier-Stokes equations has been developed. The spatial discretiza-
tion involves the discontinuous Galerkin finite element method and Lax-Friedrichs flux method. The temporal
discretizations used are the explicit Runge-Kutta time integrations. The scheme is formally second-order accu-
rate in space and time. A dynamic mesh algorithm is included to simulate flows over moving bodies. The inviscid
flows passing through a channel with circular arc bump, through the NACA 0012 airfoil, and the laminar flows
passing over a flat plate with shock interaction are investigated to confirm the accuracy and convergence of the
finite element method. Also the unsteady flow through a pitching NACA 0012 airfoil is performed to prove the

capability of the present method.

1. Introduction

N recent years, considerable progress has been made in the

numerical analysis of fluid dynamics. Usually, numerical meth-
ods for aerodynamic flows, which can be solutions of Euler and
Navier-Stokes equations, fall into three major classes: finite differ-
ence, finite volume, and finite element methods. Among these
three methods, the finite volume method seems to be very success-
ful in handling transonic/supersonic flows.!”> On the other hand,
the traditional finite element method is not suitable for capturing
those kinds of flows. Often, the numerical wiggles appear in the
traditional finite element method computations. Hence, recently,
many new ideas have been introduced in finite element methods to
avoid the numerical wiggles.>!® Our motivation is to apply some
enhancing feature, such as total variational diminishing (TVD)
limiter, monotone flux, and maximum principle, in our finite ele-
ment method to stabilize the scheme.

In this paper, we use a discontinuous Galerkin finite element
method for the spatial discretization. The main point is that we
construct three basic functions on each quadrilateral which are
close to linear functions and are almost orthogonal to each other
for uniform grid systems. Then, by using numerical integrations in
space, we obtain three independent ordinary differential equations
in time: one is to solve the mean of the flow variable, and the oth-
ers are to solve the i- and j-coordinate derivatives. Because basic
functions are allowed discontinuities at the interface of two quadri-
laterals, an upwind technique with the Lax-Friedrich flux method
is applied in the numerical procedure. Also, to avoid numerical
wiggles, a local limiter is introduced to guarantee that the numeri-
cal method satisfies the maximum principle for scalar conservation
laws.!! Finally, the Runge-Kutta method is used to achieve the
time marching: One may argue that the scheme is likely to require
more computational time per time step than most finite difference
and finite volume methods, but the scheme can easily compute the
i- and j-coordinate derivatives for each dependent flow variable by
integration formulas rather than use high-order interpolation/
extrapolation that most finite difference and finite volume methods
need to get them. Furthérmore, our method can achieve high accu-
racy by using more information within five elements rather than
using a wide range of elements, and hence it is easier to apply for
boundary conditions and complicate geometries. In Ref. 11, we
showed that the whole scheme is formally second-order accurate
in space and time for a fixed grid system.
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To simulate the flows through the NACA 0012 airfoil in arbi-
trary rigid body motion, a dynamic mesh algorithm'%'* is included
in our finite element method. The mesh is moved to conform to the
instantaneous position of the body by modeling each edge of each
quadrangle by a spring. The spring stiffness for a given edge is
taken to be inversely proportional to the length of the edge. At
each time step, the static equilibrium equations in the i- and j-coor-
dinate directions are solved iteratively at each interior node of the
grid for the displacements of the grid nodes. From a theoretical
point of view, the dynamic grid system does not affect the accu-
racy of the method; but from a computational point of view, one
needs to concern the geometric conservational law; how to esti-
mate displacements of nodes and areas of quadrangle to satisfy the
law is very important for keeping the accuracy of the scheme.

In this paper, to evaluate the present finite element method, sev-
eral basic flow problems, such as inviscid flows passing through a
channel with circular arc bump, through the NACA 0012 airfoil,
and the laminar flows passing over flat plate with shock/boundary
interactions, are studied. Finally, we simulate the flow passing
through a pitching airfoil to prove the capability of the present
method.

II. Numerical Method
A. Governing Equation
The flows of two-dimensional, compressible, and inviscid/
viscous fluid can be described in conservation form by the Euler/
Navier-Stokes equations
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with
T = W(u,—2v,)/3
Ty = u(uy +v,)

= W(—2u, +4v))/3
Fa = UTy + VT + (WPr(y—1)] a;

54 = UTyy +VTy + [WPr(Y—1)] a:

where p, p, u, v, and e are the pressure, density, x-directional
velocity component, y-directional velocity component, and the
total energy per unit mass, respectively. The dynamic viscosity 1
is determined by Sutherland’s law. The Reynolds number and
Prandtl number are denoted as Re and Pr, respectively, and a is
the speed of sound. The pressure p is given by the equation of state
for a perfect gas

p=(y— Dlpe — 1/2p & + )] @
where ¥ (= 1.4 for air) is the ratio of specific heats.

B. Space Discretization: The Discontinuous Galerkin Finite Element
Method

" The method used is based on a two-step modified Runge-Kutta
time integration coupling with a discontinuous Galerkin finite ele-
ment method. Only an outline of the numerical method is pre-
sented in Sec. ILB-II.D. A detailed development can be found in
Refs. 11 and 14.

Let Q be the computatlonal domain of Eq. (1); {Q; } a quadrilat-
eral partition of Q,and 9€);; is the boundary of €Q; . Let the approx-
imated solution w belong to a finite d1mens1ona1 space Uy, and the
test function V), be the same as the space U}, such that

U,=V, =V, = {we BVnL,wly € QP'} 3
ij

where BV is the space of bounded variation functions, L' the space
of L! integrable functions, and QP! the space of quasipolynomials
of degree < 1, which will be defined later. Note that a function in
Vh is allowed to have jumps at the interfaces.

Now we define the space QP1(Q). A function w, € QP'(Q) is
given as :

w, (1) = w(t) +w (D9 (xy) +w ()b (xy)
@
(x,y) € Q;

where w, w, and w represent the mean, i-coordinate derivative,
and j-coordinate derivative of w in £, ; respectively. £;;is an arbi-
trary quadrilateral. In Fig. 1, points A, B, C, and D are the ver-

C(IC7yC)

!

A(zA,94) g—:\l

2

B(zs,ys)
Fig. 1 Representation of quadrilateral ().

tices of €;;, and points 1, 2, 3, and 4 are the midpoints of the edges
of Q;; j respectively. We choose that ¢ and ¢ are close to linear

functions, such that

1, (x,y) € ﬁ

(yyed2 (LyeQ;

-1, (%) € AC
To define § and $ we transform the computing quadrilateral €;;
into a square Q' in £n plane by a transform function T(E;N), where
=[(Em), —1<E<1, —1<mn<1]. Then, we define ¢ and ¢ as
follows:

F(ny) =olx(EM),yEM] = (Em) =&

0%y =olx(EM),yEMl = EM =1 )

Having finished the definition of the space QP! () and also Vhl ,
we are ready to derive three ordinary differential equations for
w, WLand w from Eq. (1). Now, multiplying Eq. (1) by ¢ = 1,
¢®= ¢, or ¢ = ¢, and integrating over an arbitrary moving subdo-
main £2;;(¢), we can obtain (for the details, please see Refs. 11,
14, and 15):

d _
5 74 +Iaﬂij<r> (Fn,+Gn)dl =0 (6a)

d (WA .
S5 +.‘-aﬂi,-<t> (Fn,+Gn)§dl

di

—J'Qijm (F§,+G§,) dxdy = 0 (6b)
d (WA -
a ? +Jagij(t) (an+Gny)¢dl

_.[%(0 (F§,+G3,) dxdy = 0 (6¢)

where A is the area of Q;;, and n, and n, are unit normal vectors to
the computing subdomain boundary, and

fl_pxt gl_P)’,
f,—pux - pu
F = 2 t , G = 143 p Yy
f3_pv‘xt g3_pvyt

f4—pex,+px, —pey,+py,

Here x, and y, are the grid speeds in the x and y directions (for a
fixed grid system, x, =y, = 0). For the line integrals in Eqgs. (6b)
and (6¢), we use the following line integration formula:

Jagij(,) (Fn,+Gn)@dl=h,_, ;1 € _1p ;

+h, 12,/ +10,i€+ 10,5 T hi,j—1/2 P icn8ii-p

+hi,j+1/2(Pi,j+1/2éi,j+1/2 M

where h,_,, , h(w, 125> Wi-1p2,;) Is the numerical flux at the
edge e;_yp ;; €_1p,; is the length of the edge; and 0= 1, ¢ or ¢
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And we use the local Lax-Friedrichs flux method to compute the
flux h: .

.
wiip,)

hi—1/2,j =h (Wi—1/2,j’

= 12{F (w,_p, pn,+G(Wi_, )n,

+ +
HEW_ i Jr,+G(w_ip )0,

. _
=0 Wi = Wiin ) ®)
where
+ _ w0 o — .0 ~
Witip,; T W™ Wip Wi, = Wim it Wiy
— max (p) + () - |
Cisin,i = 1<psm (17”1‘—1/2,]" (NEPND.

+

and kf_ i P= 1,..., m, are the eigenvalues of Jacobian

[(f/aw)n, + (3g/ow)n ] |, -2

i—12,)

We note that Egs. (6a—6¢) are derived in an arbitrary moving grid
system, so the value of the area A may vary with the time.

C. Runge-Kutta Time Integrations
Rewriting the system of ordinary differential equations [Eqgs.
(6)] as:

dw
" = H
de )
w? H(w)
w=|®| Hw =|Hw
W H(w)

The evolution equations are integrated in time by using the fol-
lowing Runge-Kutta time intcgrations: TVD two-step, three-step,
and two-step modified Runge-Kutta methods.

1) TVD two-step Runge-Kutta integration for fixed grid sys-
tems:

w® =y
w =wO + A W]
%a)
W@ = wh 4+ AtH [wD]
wl=0.5w@ + [W(O)]

2) Three-step Runge-Kutta integration with an under-relaxation
method for computing steady-state problems:

WO =wn

wh=%O 4+ B, - Ar- Hw®D)
(9b)

WO = wO 4B+ A Hw® D)

WO = HO 4B, - Ar- HwkD]

where

k=1,2,3; Bi=0,B,=1/2,B5=1

W = 3

where o = 0.18 is a free parameter and p = 0.09 is a slope under-
relaxation parameter. By applying the under-relaxation method on
the slopes w and W, one can use a large Courant-Fredrichs-Lewy
(CFL) number to improve the rate of convergence for computing
steady-state solutions.

3) Two-step modified Runge-Kutta integration for moving grid
systems:

w0 =y
A" 1 At
wh = w4 2 Hw®]
An+1 2An+l
(%)
A" At
w® = n+l WO+ n+1H[W(l)]
A
Wit = @

Methods 1 and 3 are second-order accurate in time and the third
method includes the necessary terms to account for changes in cell
areas due to the moving grids. The definitions of A", A™1 and X5 Y;
are presented in Sec. ILF.

D. Local Projection Limiter

To avoid the numerical wiggles at some critical points, we intro-
duce a local projection limiter in the computing process. First we
define the following local projection to limit the slopes # and #:

WD = A, N w) (10)

where m is the minmod function

m(a,a,,...,a,) =
s-minla|, ifsign (a,) = =sign (a,) =s
0, otherwise
and
i — _ _
Ay wy = £ 00 wy)
j — _ — _—
Ay Wy =2 (W W)

Then define the limited values at the interface as follows:

— 3,0 _ o (mod) - .0 ~ (mod }
=W W Wil =Wty D

+
Wi_in,j
Now we plug the new interface values in Eq. (8) to compute the
fluxes and to ensure that our finite element method satisfies the
maximum principle for the scalar conservational laws (for the
details of proof, please see Ref. 11). We note that one can use char-
acteristic-field decompositions to define the local projection lim-
iter to achieve a more stable scheme (see Ref. 14 for the details).

E. Boundary Conditions

We use the characteristic boundary condition to compute the
far-field boundary conditions. The solid surface boundary condi-
tion for inviscid flow is no penetration, that is, the normal velocity
component is zero. For viscous flow, the usual no-slip condition is
applied,ie,u =0,v=0(u — x, =0,v —y, =0 for amoving grid
system). The density and pressure on the wall surface, see Fig. 2
for grid structure, for inviscid and viscous flow are determined as
follows:

p?=p! — minmod[0.5( p> —p' ),p']
(12)
p’=p' —0.5(p* — p)
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Fig.2 Dual mesh system for boundary conditions.

F. Dynamic Grid System

In this subsection, we introduce the dynamic grid system.!>!3
The idea is that we fix the grid points on the outer boundary, cor-
rect the grid points on the inner surface boundary according to the
moving body, and determine the rest of the points by modeling
each edge of each cell by a spring. The spring stiffness &, for any

edge a-b is taken to be inversely proportional to the length of the

edge. First, we predict the displacements Bxi(’;) and Syi’;) by the
following formulas: ' '

(p)
Sxi’j = wi,j~8x

() _
i Syi,j

=w, ;- 8y, Jj>1

where w; ;is a smoothing weighting such that w; ; = 1 and w; j, . =
0. The point (i, 1) is on the inner surface boundary, and the point
(i, Jmax) is On the outer boundary. The (8x;,, 8y;,) is the displace-
ment of the inner surface point (i, 1) from nth to (n + 1)th time.
Second, we correct (or smooth) the displacements using several

13

iterations of the equilibrium equations

Sk -ox® Sk -8y
(C) _ m m (C) m m
ox, ] = O dy,; =

>k

m

, Jj>1 (14
where the summations are performed over the four edges which
adjoin the node (i, /). In practice, only two iterations are sufficient
for our computations.

Then the new locations of the nodes can be determined by
(nt1) _ _(n) (c) (n+) _ ()
Xyg o = aG YGG iU =i

+ 8yl
and the grid speeds x,,y, are determined by

ij

(15)

(n+1) __(n-1)
. iJ LJ
xt(n) (L)) =

(n41) _ (1)
AT, +AT,

y s

(n) ;. + ij i,j
l, =

Yoo (D) AT, +AT,

(16)
where AT is the time step between (n — 1)th and nth time, and AT,

between nth and (n + 1)th time. In each time marching process, we
introduce the following geometric conservation law to calculate
the area of every cell to avoid errors induced by the dynamic grid:

d
aJ‘de dy—J‘aﬂ (x,dy-y,dx) =0 a7
And the (n + 1)th time cell area is determined as
AT =AY HAY (x; Ay, ~y; Ax,) (18)

~3.2 1

a)
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b 0.24

0.0+

LIN AND CHIN: EULER AND NAVIER-STOKES EQUATIONS

2019
From a theoretical point of view, the dynamic grid system does
not affect the accuracy of the method. But from a computational
point of view, one needs the geometric conservational law: how to
estimate displacements of nodes and areas of quadrangle to satisfy
the law is very important for keeping the accuracy of the scheme.

III. Numerical Results

The approach just described is applied to compute inviscid and
viscous flows through different regimes (subsonic, transonic, and
supersonic flows).

A. Scalar Burgers’ Equation
To demonstrate the accuracy of the finite element method, we
solve a scalar Burgers’ equation

2 2
u,+ (ME) + (%) = 0,in (0,T) xQ

y

(20)
u(x,y,0) = :11+%sin [R{x+y)]

A

T

-0.4
where the summation is taken over all edges of the cell (,), and
Ax and Ay are determined by

LT

Axn+l n
Ax:.____+—Ax

19
5 19

tion.

T T T T T
~1.25-1.00 ~-0.75 -0.50 -0.25 0.00

Fig. 3 Example 3.1 at T=0.1: a) contour of scalar solution and b)

Y
0.25

T
0.50 0.75

X

solutions along the x = y line, + numerical solution and - - exact solu-
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with period boundary condition, where Q = (—1,1)X(—1,1).
Here, we solve the problem for 7 = 0.1 and 0.5 with 64 X 64 grid
points. When T = 0.1, the solution is smooth and its contour is
shown in Fig. 3a. The numerical solution along the line x = y is
shown in Fig. 3b. It can be seen that the scheme is high-order accu-
rate and computes the extremum of the solution very well. Discon-
tinuities develop when T = 0.5. The contour and numerical solu-
tion along the same line are shown in Figs. 4a and 4b. The scheme

a)

0.8

‘.\

~
L LT

0.4~

0.0+

e mcemccesmocsmmmcmremmmammamtsemmmeweeren—===-fC

-0.24

4
*"

-0.4

T T T

T g T T T T
-1.25-1.00 ~0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 (.00 125
b) X

Fig. 4 Example 3.1 at T=0.5: a) contour of scalar solution and b)
solutions along the x = y line, + numerical solution and - - exact solu-
tion.

Fig.5 Grid 61 X 17 for the transonic nozzle problem.
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Fig. 6 Convergence history of the transonic nozzle problem.
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Fig. 7 Pressure coefficients on lower and upper surfaces.

can capture the discontinuities well. The overall results indicate
that the scheme is second-order accurate in space and time (for
more scalar results, please see Ref. 11).

B. Unsteady Transonic Channel Flow

In this example, we test a two-dimensional unsteady inviscid
transonic channel flow with fluctuating back pressure. The channel
configuration has been used for inviscid simulation by Bolcs et
al.!7 The nozzle geometry consists of a channel with a (nondimen-
sional) length of [, = 2.0, with a width of /,, = 1.0, and with a 10%
thick “bump” (//1,, = 0.10) on the upper wall. The length of the
bump is identical to the channel width.
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e)

Fig.8 Unsteady pressure coefficients: a) ¢ = 2m, b) £ = 2.5, ¢) £ =37, d) £ =3.57, and e) ¢ = 4r.
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Fig. 9 Shock and boundary-layer interaction without bleed: a) skin
friction coefficient and b) wall pressure distribution.
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Fig. 11 Pressure contours: a) without bleed, b) with bleed case 1, and
¢) with symmetric bleed.

Consider first the flow with a steady-state exit pressure of P, /P,
= 0.7369, which corresponds to an inlet Mach number of M, =
0.675. The computation grid is 61 X 17 and is shown in Fig. 5. The
convergence history and steady-state pressure coefficient on the
upper and lower surfaces are shown in Figs. 6 and 7.

Beginning from the steady-state calculation, the back pressure is
varied according to a sinusoidal pressure variation

P=PF, + P, yop sin [w(z — £,)] 21)

where the imposed exit pressure amplitude is P, ,,,/P, = 0.12 with
a reduced frequency of k = 0.396 (corresponding to f = 369 Hz for
a channel width of /; = 0.1 m and a referenced velocity of g, =
293 m/s). Figure 8 shows the pressure coefficient distributions
for one cycle. It clearly shows how the shock wave periodically
moves, disappears, and reappears in the nozzle within one cycle.

C. Oblique Shock Wave/Boundary-Layer Interaction

Shock and boundary-layer interactions lead to phenomena of
great complexity because of flow separation occurring.'®!® Here
we study the laminar boundary-layer interaction with an oblique
shock wave. The first problem tested is the interaction of an
oblique shock wave with a laminar boundary over a flat plate. The
problem corresponds to the experiments of Hakkinen et al.!® at a
freestream Mach number of 2.0, shock angle of 32.6 deg, a Rey-
nolds number based on freestream velocity, and the length from
leading edge of the plate to the shock impinging point of 2.96
X 10°. The grid for this numerical experiment is the same as that
used by Liou!® and consists of 67 x50 grid. Figures 9a and 9b
show the skin friction coefficient and wall pressure distribution
along the wall for the shock/boundary interaction without the
bleed system. In the present results, an asymmetric structure is
found within the shock-induced separation bubble and the negative
skin friction region indicates the length of the separation bubble. It
can be seen that, in the front of flow separation, the numerical
result agrees well with the experimental data'® and other numerical
results.?%?! In the region and downstream of flow separation, our
result is satisfactory.

2.00
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Now, we proceed to study the shock and boundary-layer interac-
Sym-bleed tions with special attention to the boundary-layer control by using
254 _ __ Down-bleed a bleed system.”>?* Removal of the low momentum fluid near the

—-—  Without bleed wall, even a small mass of fluid, is capable of increasing the veloc-

ity, reducing the boundary-layer thickness, and improving the pro-

file of the boundary layer. One of the goals is to define the opti-
154 mum bleed location. Thus, in this numerical investigation, we have

] a the following choices in determining bleed locations: 1) down-
Lo /N stream just after the shock impinging point X with the slot walls at

| // ,/ \‘ \\v X/X; = 1.095 and 1.01 (case 1, denoted down-bleed); and 2) the
05 L \ I " shock foot with the slot walls at X/X, = 0.997 and 1.003 (case 2,

’ / Voo denoted sym-bleed). Figure 10a shows the schematic of the shock
1 wave and boundary interaction with bleed, and Fig. 10b shows the

00 02 0< 08 08 L0 iz 14 18 18 grid system. ’[‘he bleed hole with and the aspect ratio (hol.e depth
to width) are important geometric parameters in the selection of a

X/ Xs highly efficient bleed system.'%?2 Here we fix an aspect ratio (hole

Fig. 12 Compressible displacement thickness around the shock im- depth/width) of three. For the details of this subject, please see
pinging point. Refs. 16, 22, and 23. Figures 11a—11c show the pressure contours
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of the main flowfield, and Fig. 12 shows the comparisons of the
compressible displacement thickness. From Fig. 11c, one can see
that, under an appropriate bleed control, the main flow of shock/
boundary-layer interaction is almost similar to a pure inviscid flow
of shock reflection on the wall. The numerical results indicate that
the position of bleed control located at the shock foot is a better
choice to reduce the extent of separation region in the view of the
principles of control techniques.'® “

D. Steady/Unsteady Flows Over NACA 0012 Airfoil

The problem considered is that of an NACA 0012 airfoil in a
sinusoidal oscillation pitching about a fixed point at the quarter
chord.!%13:1324.25 The angle of attack o varies according to

! o = 0, + O sin (2kr) 22)

where o, is the mean pitching angle, o is the amplitude of the
sinusoidal oscillation, and £ is the reduced frequency.

The grid for steady/unsteady problems is C-type grid system,
the minimum length on the leading edge is Axy, = 6.45X 107
(normalized with the chord length), on the trail edge is Ax;, =
1.735X 1072, and the minimum Ay adjacent wall surface is 7.8 X
1073, the computational domain expanding from the airfoil leading
edge to 15 times the chord length. Figures 13a—~13c show the con-
vergence history, pressure coefficient, and Mach contour at the
steady state with ov= 0 and M., = 0.8. Figure 13b shows a compar-
ison of pressure coefficients between our results and Jameson’s
results.?® One can see differences at the leading and tail edges. We
suspect that these differences may be due to the different grid
structures used- at those edges. By the small perturbation theory,
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the maximum C), at the leading edge is about 1.67, which indicates
that our result is better at the leading edge.

For the unsteady problem, we consider o, = 0 deg, 0y = 5 deg,
k=1, and M_, = 0.8. Unsteady calculations are started from the
convergent steady-state solution presented earlier as the initial
condition. Figure 14a shows the variations of the aerodynamic
forces and the quarter-chord pitching moment coefficients with
phase angle 2kt. After three cycles of pitching, C; and C,, are
almost sinusoidal. Figures 14b and 14c are the variations of C; and
C,, with pitching angle in fourth cycle, which demonstrate that the
flow becomes periodic after three cycles of airfoil oscillation. Fig-
ures 14d and 14e show that the histories of normal force and pitch
moment coefficients during the fourth cycle compared well with
Venkatakrishnan and Jameson’s results.?* Figures 15a—15d show
the surface pressure coefficient distributions during the fourth
cycle. They illustrate the movement of shock waves and pressure
jumps. One can see that an increase in pitching angle induces an
increase of speed and shock strength on the upper surface. The
reverse phenomena happens on the lower surface of the airfoil.
Figures 16a—16d show the pressure coefficient distributions on air-
foil surface, which agree with the Venkatakrishnan and Jameson’s
results.?* The difference between our results and their results
occurs at the extreme; our result of capturing extreme is sharper
than theirs. This example shows that our finite element method
coupling with the dynamic grid algorithm has the ability to study
unsteady transonic problems with body motions.

V. Conclusion

An explicit Runge-Kutta discontinuous Galerkin finite element
method for the solutions of Euler and Navier-Stokes equations has
been developed. In this paper, a dynamic grid algorithm for tran-
sonic flow past an airfoil with arbitrary rigid motions is included in
the numerical procedure. The accuracy and convergence of the
method are investigated for some basic flows. Fairly good agree-
ment by comparing with experimental and numerical data is
observed. From the numerical results of unsteady flows over the
pitching NACA 0012 airfoil and over a channel with circular arc
bump, the present solution procedure is shown to be a stable and
accurate approach for computing the unsteady aerodynamic flows.
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